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Abstract—The Generic Modeling Environment (GME) is a con-
figurable tool suite that facilitates the rapid creation of domain-
specific model-integrated program synthesis environments. There
are three characteristics of the GME that make it a valuable tool
for the construction of domain-specific modeling environments.
First, the GME provides generic modeling primitives that assist
an environment designer in the specification of new graphical
modeling environments. Second, these generic primitives are spe-
cialized to create the domain-specific modeling concepts through
meta-modeling. The meta-models explicitly support composition
enabling the creation of composite modeling languages supporting
multiple paradigms. Third, several ideas from prototype-based
programming languages have been integrated with the inherent
model containment hierarchy, which gives the domain expert the
ability to clone graphical models. This paper explores the details
of these three ideas and their implications.

Index Terms—Computer-aided software engineering, software
modeling, software prototyping, visual languages.

I. INTRODUCTION

MODEL-INTEGRATED computing (MIC) has been
developed over a decade at Vanderbilt University,

Nashville, TN, for building embedded software systems. It is
an approach to developing systems that directly addresses the
problems of system integration and evolution by providing
rich domain-specific modeling environments. This technology
is used to create and evolve integrated multiple-view models
using concepts, relations, and model composition principles
routinely used in the domain-specific field [14]. MIC also facil-
itates systems/software engineering analysis of the models and
provides for the automatic synthesis of applications from the
models. The approach has been successfully applied in several
different applications, including automotive manufacturing
[17], signal processing [21], and electrical utilities [18], to
name a few.

A core tool in MIC is the Generic Modeling Environment
(GME), a derivative of earlier research on domain-specific vi-
sual programming environments [9]. GME is a domain-spe-
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cific modeling environment that can be configured and adapted
from meta-level specifications [19]. Thus, based upon the meta-
models specifying a domain-specific modeling language, GME
can be adapted quickly from a general-purpose drawing tool to a
domain-specific tool that provides an environment, for example,
for modeling an automotive manufacturing plant [17].

There are three characteristics of the GME that make it a valu-
able tool for the construction of domain-specific modeling en-
vironments.

1) The GME provides generic modeling primitives that as-
sist an environment designer in the specification of new
graphical modeling environments.

2) These generic primitives are specialized to create the
domain-specific modeling concepts through meta-mod-
eling. The meta-models explicitly support composition
enabling the creation of composite modeling languages
supporting multiple paradigms.

3) Several ideas from prototype-based programming lan-
guages have been integrated with the inherent model
containment hierarchy, which gives the domain expert
the ability to clone graphical models.

Let us informally introduce these concepts through a simple ex-
ample. Fig. 1 shows the meta-model of a simple modeling lan-
guage composed of a hierarchical finite-state machine (FSM)
representation and a signal flow language.

The meta-modeling approach supported relies on the use
of Unified Modeling Language (UML) class diagrams [2].
Meta-models should be able to specify the syntax and seman-
tics of a modeling language. Our meta-models specify the
abstract syntax of models in the form of a UML class diagram:
the models in the modeling language are instances of classes
introduced on the UML class diagram, i.e., the meta-model.
In a sense, the UML class diagram specifies a “grammar” that
represents all the possible models created in the “language.”
The UML class diagram also expresses restrictions on models
(e.g., cardinality of objects appearing in relations), and we also
allow the Object Constraint Language (OCL)-based constraints
for specifying well-formedness conditions for the models.
These restrictions and constraints specify the static semantics
of the modeling language. In the example, the top window
shows the meta-model specifying a hierarchical signal flow
modeling language. It uses the basic modeling concepts, such
as atoms, models, and connections. The modeling concepts are
expressed as stereotypes of specific classes and are directly
supported by the modeling environment. Atoms are classes
of objects that do not contain other objects, while models are
container classes, and connections are associations that are
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Fig. 1. Meta-model composition.

visualized with a line between iconic objects (which are atoms
or models). Processing is an abstract base class. A compound
is a composite model that can contain other compounds and
primitives. Primitives are the leaf nodes that implement the
elementary computation in the signal flow graph. (They may
have an implementation associated with them in a traditional
programming language, for example.) The signal flow (SF)
connections are implemented by connecting InputSignals and
OutputSignals together with Dataflow connections.

The second meta-model (FSM) describes a simple hierar-
chical finite-state machine language. States can contain other
states that can be connected together by Transition connections.
It can be assumed that both of the SF and FSM meta-models
were pre-existing in a meta-model library.

We would like to then compose them according to the fol-
lowing rules. We would like to define a new kind of Primitive

(FSMNode) that can contain a finite-state machine specifying its
implementation. However, we do not want a State to be able to
contain this new kind of model. Furthermore, we want to make
selected InputSignals and OutputSignals of any FSMNode to
be mapped to certain States it contains using connections. (This
could mean, for example, that the data values associated with
those signals are accessible from the implementation associated
with the given State.)

This composition is defined by the third meta-model (Com-
position). The new FSMNode class inherits from both Primitive
and State. (Notice that the curved arrows inside these classes in-
dicate that they are references to existing UML classes defined
elsewhere.) Inheriting from State through the standard UML in-
heritance would mean that a State could contain an FSMNode
violating one of our rules. Instead, we use implementation in-
heritance—an extension to the traditional UML concept of in-
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Fig. 2. Sample model in the SF–FSM language.

heritance—(explained in Section V of the paper) which accom-
plishes exactly what we want: an FSMNode can contain what-
ever a State can, but it cannot act as a State; it cannot be inserted
into a State. (In addition, FSMNodes also cannot be connected
together by Transitions.)

Notice how the new SignalMap connection connecting States
and Signals is also introduced in the Composition meta-model.
Since FSMNode inherits from Primitive, it can contain Signals.
FSMNode also contains a SignalMap that enables connecting
Signals to States satisfying our last requirement.

Notice that the meta-models specify the syntax and the static
semantics of the modeling language. They do not specify the dy-
namic semantics. The names FSM, State, and Transition, for ex-
ample, imply the intentions of the meta-modeler, but how such
a model should be executed is not defined here. Assigning dy-
namic semantics to domain-specific models is the job of sep-
arate software components, called model interpreters, in our
framework.

Fig. 2 shows an sample model in the modeling environment
defined by the above meta-model. The System model contains
a signal flow diagram containing a finite-state machine (MyF-
SMNode). Its structure is shown in the bottom window. A capa-
bility called cloning is also used in this example. Cloning means
that it is sufficient to define a “master” copy—called the proto-
type—of a model and reuse it in different contexts by creating
clones of it1 . Filter is a prototype Primitive model (shown in
the model browser on the right-hand side (RHS) of the figure

1The prototype/clone relationship is reminiscent of the class/instance rela-
tionship used in object-oriented systems, but it has somewhat different seman-
tics, to be discussed subsequently in the paper.

contained at the root level). System contains two clones of it:
Filter1 and Filter2. Any changes to Filter would propagate auto-
matically to both clones. Using simple copies instead of cloning
would require manual changes to all three Filter models.

This simple example illustrates the key concepts behind
GME. A complex modeling task often requires the leveraging
of knowledge and expertise in numerous scientific and engi-
neering disciplines. The successful use of an environment like
the GME necessitates the collaboration and the skillful execu-
tion of the roles of domain expert, environment developer, and
experienced programmer. The participants in these roles must
synergistically work together in several ways, as explained in
the following paragraphs.

Domain Expert: The role of the domain experts is to con-
struct the domain-specific models. They need not possess intri-
cate knowledge of the GME. They only need a basic familiarity
that would allow them to create and navigate around the models.
They do, however, require detailed insight into the various minu-
tiae of the underlying domain.

Environment Designer: The creation of the domain-specific
meta-model, which represents the description of a particular
modeling environment, is an arduous task. The meta-model must
contain all of the concepts that the domain expert needs to create
a model. The individuals responsible for this role must have an
understanding of the specific domain, as well as an appreciation
of the GME, especially its meta-modeling environment. While
the modeling environment creation is fully automated, the
development of the domain-specific program synthesis code is
still a manual procedure. This is also the responsibility of (some
of the) environment designers. This participant must wear two
different hats—part programmer and part domain expert.
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Fig. 3. GME modeling concepts.

GME Developers: The GME developers are unique in that
they need not possess any knowledge of a specific domain in
which the GME will be applied. They must, however, have a
great understanding of general modeling concepts and how
those concepts are implemented in a programming language.

This paper describes certain concepts applied in GME that
help reduce the complexity involved in the roles of environment
designer and domain expert. In the next section, an overview is
given of the general modeling concepts available in the GME.
The core focus of this paper is the description of meta-modeling,
cloning, and compositional meta-modeling. These concepts will
be explained in Sections III, IV, and V, respectively, followed by
conclusions.

II. GENERAL MODELING CONCEPTS

The purpose of this section is to describe the core modeling
concepts provided within the GME and their relationships. The
GME supports various techniques for building large-scale com-
plex models. The techniques include the following:

• containment hierarchy;
• multiple-perspective views;
• module interconnections;
• sets;
• references;
• explicit constraints.

The UML diagram below depicts a meta-model for these con-
cepts (essentially, the internal data model of GME) and the com-
plex relationship among them. The modeling techniques are im-
plemented with the help of these data structures.

From Fig. 3, it can be seen that the root container class is
called Project, and a Project contains a single Folder. Folders
are containers that help organize models, just like folders in a

file system help manage files. Folders contain Models, which
are the most fundamental composite modeling elements. First
Class Objects (FCOs) are as follows:

• models;
• atoms;
• references;
• connections;
• sets.

Models are the compound objects in our framework. Each
FCO contained in a Model always has a Role that indicates what
purpose the embedded FCO has in that model. The modeling
language determines what type of objects are allowed in which
models in what roles, but the modeler determines the specific
instances and number of FCOs a given model contains.

The only difference between Models and Atoms is that the
latter are elementary objects; they contain no parts. All FCOs
have a predefined set of Attributes, which are values of a simple
type, such as integer and string. The Attribute values are user
changeable.

One of the novel modeling concepts in GME is the introduc-
tion of Aspects [22]. Aspects help manage the complexity of
large models by allowing domain experts to focus on selected
parts of a design. Aspects are used for visibility control, but they
have a specific semantics. Every Model has a predefined set of
Aspects, and each part of that Model can be visible or hidden in
an Aspect. Every part has a set of primary aspects where it can
be created or deleted. There are no restrictions on the set of As-
pects a Model and its parts can have; a mapping can be defined
to specify which Aspects of a part are shown in a particular As-
pect of the parent Model.

It should be noted that “GME aspects” are different from
the notion of “aspects” within Aspect-Oriented Programming



KARSAI et al.: COMPOSITION AND CLONING IN MODELING AND META-MODELING 267

(AOP) [12]. Aspects, in the GME sense, can be compared to
the viewpoint concept that has been a frequently researched
topic within requirements engineering [7], [20]. The notion of
views/viewpoints is a key part of the IEEE Recommended Prac-
tice for Architectural Description of Software-Intensive Systems
[8]. This powerful construct, which assists the modeler in sepa-
rating the concerns of multi-perspectives, is also similar to views
in a database [4]. In separate research, we have also investigated
the application of aspects, as defined within the context of AOP,
to domain-specific modeling [6]. The term, however, as used in
the remainder of this paper is aligned more with the notion of a
viewpoint.

The modeling language can specify that instances of certain
types of FCOs appear on the outside interface of the container
model as ports. The primary purpose of ports is to enable Con-
nections to Models. The simplest way to express a relationship
between two objects in the GME is with a Connection. Con-
nections can be directed or undirected. In order to make a Con-
nection between two objects, each object must have the same
parent in the containment hierarchy. The participating objects
also must be visible in the same Aspect (i.e., one of the primary
Aspects of the Connection). The meta-model can define sev-
eral different types of Connections. It also specifies what type
of object can participate in a given type of Connection. A signal
flow language provides a good example. Signal flow Models
contain input and output signal Atoms, and they appear as input
and output ports on their outside interface. Signal flow Connec-
tions can only be created between input and output signals and
input and output ports. Connections can further be restricted by
explicit Constraints specifying their multiplicity, for instance.
Constraints are Boolean expressions, which are evaluated over
the object instances. The GME permits the specification of con-
straints using a variant of the OCL [24].

A Connection can only express a relationship between objects
contained by the same Model. In the authors’ experience, it is
often necessary to associate different types of model objects in
different parts of the model hierarchy, or even in different model
hierarchies altogether. References support these types of rela-
tionships well.

References are similar to pointers in object-oriented program-
ming (OOP) languages. A reference is not a “real” object; it just
refers to one. In GME, a reference must appear as a part in a
Model. This establishes a relationship between the Model that
contains the reference and the referred object. Any FCO, except
for Connections, can be referred to. A Reference can even be
referred to by another Reference. References can be connected
just like regular model objects. Model references obtain copies of
the ports of the referred Model. These ports can then participate
in Connections. A Reference always refers to exactly one object,
but a single object can be referred to by multiple References.

Connections and References model relationships between (at
most) two objects. Sets can be used to specify a relationship
among a group of objects. The only restriction is that all the
members of a Set must have the same parent and be visible in
the same Aspect.

A modeling language is defined in terms of Folders, FCOs,
(i.e., Models, Atoms, Sets, References, and Connections), Roles,
Constraints, and Aspects that are used to build its models. In other

words, the modeling language is represented by the instances of
these concepts. An analogy can be made between this and class-
based OOP languages, such as Java, where the corresponding
concepts are the class, interface, built-in types, etc. An example is
the use of the Model class in a meta-model, which means that the
corresponding modeling language supports models of the type
denoted by the instance of the Model class. These model defini-
tions act like class definitions in Java: objects that are patterned
after them can be created. Furthermore, when a particular do-
main-specific model is created in GME, it becomes a prototype:
a class on a lower abstraction level. This prototype defines a set
of models, which are similar to each other in terms of their struc-
ture and their attributes, but each one is an individual. Thus, the
prototype can be reused, through cloning, as many times as the
modeler wishes.

To demonstrate the power of types and prototypes in mod-
eling, reflect on the following example. Consider a model for a
large network of components that represents the circuit topology
for an electrical utility company. In such a model, it is reason-
able to assume that a large number of common components
would exist (e.g., transformers). Without prototyping, the po-
tential evolution and manageability of the model might suffer.
To illustrate this, consider a case where a slight change to the
properties of all transformers is needed. With prototyping, the
change could be isolated to one place—the prototype descrip-
tion. If prototyping is not available, however, a modeler must go
to every single instance of each transformer and make the same
change to each one.

III. THE META-MODEL: TYPES

The basic modeling techniques of GME are generic building
blocks that manifest a set of modeling patterns and practices
for a large number of domains. They were designed as an aid
for graphical and hierarchical modeling of complex engineering
systems and to support automatic system synthesis [1], [14],
[22]. The domain-specific building blocks are specialized basic
modeling elements, together with clear semantics. For example,
imagine a simple signal-processing domain that captures the
basic concepts related to signal flow. Note that this modeling
language is an enhanced version of the SF language introduced
in Fig. 1. In this domain, suppose that there are two types of
models (Compounds and Primitives, the latter representing leaf
nodes in the graph) and two types of atoms (Signals and Param-
eters). Clearly, these elements have different semantics and con-
straints; for instance, a Primitive model shall not contain other
models. We call this configuration of GME the meta-model of
the domain. The meta-model contains the definition of the var-
ious types of domain-specific modeling elements, together with
the specification of their relationships [10].

In this section, the structure of a meta-model is described in
more detail. The Extensible Markup Language (XML) has been
chosen for the textual representation of meta-models [26]. The
XML will be used frequently to illustrate concepts throughout
this section. Note, however, that the user of GME does not have to
specify the meta-models using the XML representation. There is
a GME configuration for a meta-modeling domain, where UML
class diagrams are used to specify the meta-models (see Fig. 1).
In other words, GME supports a modeling language based on
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Fig. 4. SignalFlow paradigm description.

Fig. 5. Model containment description.

UML class diagrams, which is used to specify meta-models.
A model interpreter then automatically generates the XML
representation of the target modeling language from these
meta-models. This meta-modeling environment is specified
within itself through a set of meta-meta-models, allowing the
GME to “self-boot.” The meta-modeling environment is beyond
the scope of this paper (see [13], [14], and [19] for more details).

A. Containment Hierarchies, Types, and Roles

The GME has two distinct groups of models forming two
(containment) hierarchies, namely, the meta-model (developed
by the environment designer) and the application model (built
by the domain expert). Both containment hierarchies form a tree
with root objects called the paradigm (the meta-project) and the
project, respectively. Each modeling element of the application
model has a corresponding meta-modeling element, called its
type. For example, an “AnalogSignal” modeling element would
be associated with a meta-atom named “Signal” that represents
its type.

The first role of the meta-model is to describe the different
types of modeling elements that domain experts can use. The de-
scription of the modeling elements for the signal flow example
is shown in Fig. 4.

Merely listing the available types of elements does not specify
how they can be composed into a tree structure. Most modeling
elements simply cannot contain others. For instance, atoms and
connections are not containers. For models, we must list the
other types of elements that they may contain. This is best il-
lustrated with the next example meta-model in Fig. 5.

Notice that a single type of atom (Signal) can play different
roles (InputSignal or OutputSignal) in instances of the Com-
pound meta-model. This extra indirection makes it easy to reuse
the same type more than once by using different role names. The
role name is analogous to the name of class member variables
in OOP. In our case, however, it does not indicate the presence
of a single instance of a type, but a possibly empty collection of
instances of the same type.

Fig. 6. Connection and Pointer Specification of DataFlow.

B. Connections and Pointer Specifications

As mentioned in Section II, FCOs can be joined by connec-
tions, but not by arbitrarily cutting through the containment
hierarchy. The graphical model editor imposes this practical
limitation since it has to display each connection in a single
model, called the parent of the connection. The FCOs can be
immediate children or grandchildren of the model. In the latter
case, the FCO is displayed inside one of the children of the
model as a port. This setup makes the interface (i.e., the ports)
of composite models visible and manageable. An instance of
a meta-connection connects two FCOs, which can be of sev-
eral types. More precisely, the meta-connection can control the
type and the role of the source and destination. In the case of
the port, it can also specify the type and the role of the parent
of the port. We use pointer items, pointer specifications, and
connection joints to specify fully all possible combinations in
the following way.

A pointer item is a string that identifies objects of a specific
type and role. In the case of an immediate child, this string is
simply the role name of an atom, like “InputSignals.” In the
case of a port, it is a pair of words, where the first word is
the role name of the model, and the second is the role name of
the atom. For example, the string “Primitives InputSignals” in
Fig. 6 matches all InputSignal ports of Primitive children in the
parent model in which we are creating the connection. Notice
that each word of the pointer item must be a role name and that
they uniquely identify the corresponding types of objects, once
the parent model of the connection is known.

A pointer specification (pointer-spec) is a list of pointer items
along with a name (for a connection, it is either “src” or “dst”). It
identifies several types of objects that can act as the “source” or
“destination” of a connection. A connection joint (“conn-joint”)
is just a pair of pointer descriptions that specify all combinations
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from “src” objects to “dst” objects. Finally, a meta-connection
contains a list of connection joints. We illustrate these concepts
by the next example shown in Fig. 6, which captures the fol-
lowing rules:

• InputSignals can be forwarded into contained Compound
and Primitive models by connecting them to InputSignal
ports.

• OutputSignal ports can be connected to OutputSignal
atoms, making them available higher up in the hierarchy.

• OutputSignal ports can be connected to InputSignal ports,
forming the interconnections between the contained ele-
ments.

Although these concepts might seem cumbersome, they actu-
ally help specify all pairs of valid sources and destinations in a
precise, compact, and intelligible way. In the previous example,
it is important that InputSignal atoms shall not be connected to
OutputSignal atoms, a fact that can be very easily missed by hu-
mans in a simple enumeration of all valid pairs.

C. References and Sets

Because connections cannot cut through the containment hi-
erarchy, another modeling concept is needed that can link to ob-
jects deep in the hierarchy, or in other distant parts of the hier-
archy. Recall from Section II that this is achieved with refer-
ences in the GME terminology. A reference can either point to
a single object at a time or be empty. From every other respect,
it is very similar to an atom. We already have the required ma-
chinery, the pointer specification, to control the possible types
of the referred object. Here the first word of each pointer item
starts with a type name instead of a role name. This is because
references link deep into the hierarchy, where a single role name
does not make sense. In the case of connections, the specifica-
tion always started implicitly from the parent model of the con-
nection, so the type was implied.

The last modeling element that specifies a relation is the Set.
It is unique because it can link to several elements at the same
time, but they have to be its siblings. In effect, a Sset selects a
subset of its siblings. Similar to the meta-reference, the meta-set
has a single pointer specification that controls the possible types
and roles of siblings to which the set can link.

D. Attributes and Value Types

An attribute of a FCO contains a single value of a predefined
value type. The meta-attribute defines the name, the value type,
and default value of the attribute. Aside from basic predefined
data types, enumerated types are also available. The enumera-
tion type is analogous to the facility offered in most program-
ming languages, where the possible choices of values are pro-
vided.

E. Aspects and Parts

Recall that the children of a model are separated according
to their roles. The GME visualizes models through aspects by
displaying only those children objects that belong to selected
groups of roles. This (possibly overlapping) partition of roles

Fig. 7. Specification of Aspects.

into aspects allows multi-perspective views to be projected onto
the model.

Each meta-model has a list of aspects, and each aspect con-
tains a list of parts. A part selects a single role of the meta-model
(and therefore the corresponding type), together with some aux-
iliary information. We say that a part is primary if the children
of the corresponding role are able to be modified in the graph-
ical model editor in the given aspect. Otherwise, we call it sec-
ondary, which means that they are visible but cannot be mod-
ified in that aspect. Any part can be a port. This is the place
where we choose and control the interface (that is, the ports) of
models. These concepts are illustrated in Fig. 7.

F. Registry Nodes, Extensibility, and Names

Environment developers have to configure the various tools
of the GME in complete detail to create a coherent environment
for domain experts. This includes, for example, the specifica-
tion of visualization information, such as the color, style, and
icon for each meta-object of the paradigm. To achieve this, we
have added extensible storage for auxiliary configuration data,
called the registry, to meta-modeling (and modeling) elements.
The registry is a list of registry nodes, each of which has a
name and a string value. A registry node can contain further
subnodes. The name space of the registry node names is not
fixed in order to provide extensibility for external tools. Dif-
ferent tools can store tool-specific information in separate parts
of the registry tree.

IV. THE APPLICATION MODEL: PROTOTYPES

We have seen that the environment developer fully config-
ures the GME at meta-modeling time by defining the meta-
modeling elements. The domain expert then instantiates these
meta-objects and creates the application model. Notice that in
this type-instance relationship, the domain expert cannot create
new types or subtypes of existing meta-modeling elements. To
leverage the power of reusability, the GME supports the cre-
ation of prototypes and inheritance hierarchies of prototypes in
the application model. This greatly increases the productivity
of domain experts and the manageability of the application
models.



270 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 12, NO. 2, MARCH 2004

Fig. 8. The cloning process.

A. Prototypes and Clones

A prototype2 is a representative example of a group of ob-
jects that can be reused (or cloned) at other places in the appli-
cation model. There is no notion of instantiation, as in class-
based OOP, because prototypes exist as independent entities
[16]. They are all regular modeling elements, like atoms, refer-
ences, sets, and composite models. As in other prototype-based
systems [23], two mechanisms are provided to construct objects
[3]:

1) a mechanism for creating completely new objects;
2) a mechanism for cloning existing objects.
The first mechanism is employed when there is no existing

prototype upon which to base the new object. The second mech-
anism is used to produce a copy of an existing prototype that
can be modified to get similar, but not identical, properties. The
prototype–clone relationship is preserved for the full lifetime of
these objects, which distinguishes cloned objects from simple
copies. Cloned objects automatically reflect all changes made
in the prototype.

As an example of the cloning process, let us consider a model
of a car and its power-window system in Fig. 8. To simplify the
figure, we model a coupe with two doors on each side. Each
door has a power window and a power-window switch. The left
door on the driver side has an additional switch to control the
other power window on the RHS. First, we construct an abstract
model of a door and then create two clones of it inside the model
of the car. Finally, we create a new switch object “RS2” in the
“Left Door” clone, which shall control the power window “RW”
of the right door. If we decide at some later time to extend the
model of the abstract door with additional objects (like a power
door lock and its control), then the changes will propagate to
both the left and right doors of the car.

In the remainder of this section, we will formalize a few basic
requirements (axioms) while examining their consequences.
The following two axioms are easy to understand, but they have
a profound impact on the rest of the system.

1) An untouched clone, which has never been modified,
must behave exactly the same way as its prototype.

2) Each clone has a single prototype.

The second axiom, which in fact prohibits multiple inheri-
tance in the prototype–clone hierarchy, may be argued. In [3],
it has been argued that objects tend to be constructed from a

2See [3, ch. 3] for an excellent introduction to prototype-based languages.

single prototype. Although we feel that this is a serious restric-
tion in principle, we have accepted it to ease the implementation
and increase the usability3 of the system. Nevertheless, we have
found no logical inconsistencies when clones can have multiple
prototypes.

B. The Type of Prototypes and Clones

Recall that each modeling element in the application model
has a type, which is the corresponding meta-modeling element.
In the previous example, the type of both “Abstract Door” and
“Left Door” is “Door,” while the type of “Power Window” and
“LW” is “Window.” Using our first axiom we can see that pro-
totypes and their unmodified clones must have the same type. In
fact, this is always the case, as types of modeling elements can
never be changed.

The positive side effect of this is that clones have the same set
of attributes as their prototypes. By modifying the value of an
attribute of some prototype, the change propagates to all clones.
As in all prototype-based systems, however, the clones are not
identical mirror images of their prototypes. It is possible to over-
write any attribute value in the clone and expect the new value
not to be rewritten by the propagation mechanism. This is imple-
mented by an extra flag for each attribute value, which indicates
whether the value is inherited from the prototype or explicitly
specified in the clone.

C. Composite Clones and the Dependency Hierarchy

Propagation is not limited to the changes of attribute values.
By the first axiom, an unmodified clone of some composite
model prototype must be indistinguishable from the prototype.
Therefore, it must contain clones of the prototype’s children, to-
gether with their attributes and their children all the way down
the containment hierarchy. Again, the clone is not a simple deep
copy of the prototype, as the relationship between the prototype
and clone is preserved.

There exists a dependency hierarchy among the objects of the
application model. Each clone depends on its prototype, and the
children of each clone depend on the children of the clone’s pro-
totype. The dependency relationships between clone and proto-
type and between their children serve the same purpose, namely,
the dependent objects are automatically updated when the ob-
ject they depend on is modified. Notice that the dependency hi-
erarchy is a disjoint union of up-directed trees (a forest). The
dependency hierarchy gets even more interesting when new ob-
jects are inserted into a clone. If the inserted object is a newly
created one, then the dependency chain stops; otherwise, it is a
clone, and the dependency chain continues at some other part
of the containment hierarchy. For example, we could add a lock
switch to the Left Door in Fig. 8 that could disable to window
switch of the right door of our car. This new part could be cre-
ated in place, that is, it could be a new model object. In this case,
there is no upward dependency chain starting here. It would be,
however, a better modeling practice to define the lock switch in
a different place in the model hierarchy, perhaps as a root object,

3This system is in everyday use in different engineering domains [5], [13],
[14]. We have found that some users had difficulty with grasping and produc-
tively using even single inheritance.
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not even as part of the Abstract Door, and insert a prototype of
it in the Right Door. In this case, the dependency chain would
continue up to this new root object.

Creating clones of prototypes is a simple operation in the
GME—the prototype is selected and then dragged to the desti-
nation. This process prevents the introduction of multiple inheri-
tance in the application model. It also differentiates two types of
dependencies: an explicit dependency is created when the user
creates a clone of some prototype, and if the prototype is a model
and has children, then the dependencies between the children of
the clone and the children of the prototype are implicit.

D. References, Sets, and Propagation

The dependency relationship is not limited to models, atoms,
and attributes. It carries over to connections, references, and
sets, as well. However, connections cannot be retargeted; only
their attributes can be modified in clones. On the other hand,
reference and set relations can be modified in clones. The prop-
agation of sets and references has the same semantics as that of
attributes. In the case of sets, either the entire selection is prop-
agated from the prototype or it is completely overwritten in the
clone. The attribute value propagation behaves the same way in
all FCOs.

The set and reference selections, and the attribute values,
propagate down the dependency hierarchy. The propagation of
a particular value can be broken at any node by setting the flag
and explicitly specifying the new value.

E. The Consequence of the Second Axiom

The seamless integration of the prototype and containment hi-
erarchies presents a unique challenge. Observe that inheritance
and containment of classes in OOP are not as complex as here.
In OOP, composite classes can be derived, but only the derived
class itself can be enhanced. None of the contained (locally de-
fined) classes inherited from the base class are enhanced. In fact,
in OOP, contained classes are not carried over into the derived
class at all; they are merely accessible.

According to the rules we have presented so far, it is possible
to violate the second axiom by implicit dependencies. Consider
the situation in Fig. 9, where model A contains another model B
and a clone C of B. We then create a clone A’ of model A, which
in turn contains models B’ and C’ cloned from B and C, respec-
tively. Clearly, C depends on B, A’ on A, B’ on B and C’ on C.
Now we expect that A’ behaves the same way as A does until we
modify it. This means that C’ must be cloned from B’ as well,
showing that C’ has two prototypes. This clearly contradicts our
second axiom. To avoid this situation, we have chosen the some-
what limiting solution that the (explicitly cloneable) prototypes
must be root objects contained in folders. This makes C impos-
sible to clone from B. While this restriction is not elegant from
a purely scientific point of view, it simplifies the environment,
both its implementation and its use.

Notice that a weaker restriction would have been sufficient to
prevent this situation, namely, the requirement that no prototype
A can contain another prototype B and its clone C. This would
prohibit embedded dependencies in prototypes. Tto enforce this
restriction, however, we would need to disallow the creation of
the clone C of B if A has clones already and allow this operation

Fig. 9. Multiple inheritance in the prototype–clone hierarchy at C’.

Fig. 10. Clone of a composite object.

if A has no clones. This would differentiate regular objects and
prototype objects (objects that have clones) in a fundamental
way.

Our approach simplifies the handling of relations other than
the containment hierarchy, as well Fig. 10. Consider the fol-
lowing example where model A contains atoms B and C, and
the clone A’ of A contains the clones B’ and C’ of B and C, re-
spectively. Imagine that a user would like to create a connection
between B and C in A. Clearly, the framework has to create a
cloned connection in A’ and needs to identify the endpoints of
the cloned connection in A’. Because of our restriction on the
explicit derivations, atom B cannot have clones in A’ other than
the implicit clone B’, which makes this identification trivial.

F. Deletion of Objects

We now return to the first axiom to help us understand the be-
havior of a consistent implementation when objects are deleted.
Consider Fig. 9 again and imagine that a user would like to
delete B. Since A’ must be an identical copy of A, as long as
it is not modified, the system has to delete the clone B’ of B.
This shows that all clones of a prototype must be automatically
deleted whenever the prototype itself is deleted.

Having dealt with the deletion of prototypes, we turn our at-
tention to that of clones. Clearly, it must be possible to delete an
explicitly derived clone, such as A’ in our example. The issue is
whether one can delete the implicitly derived clones, such as B’
and C’. We have forbidden this for the following reasons. First,
this operation would be impossible to undo manually, using reg-
ular editing operations. This is because of the restriction that
explicit prototypes, the atom B in our case, must be root ob-
jects contained in folders. Second, this behavior is analogous
to that of the class inheritance in OOP. One cannot delete con-
tained classes, functions, etc., in derived classes; they can only
be hidden to some extent.

V. META-MODEL COMPOSITION

Just as the reusability of domain models from application
to application is essential, the reusability of meta-models
from domain to domain is also important. Ideally, a library
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Fig. 11. Interface inheritance.

Fig. 12. Implementation inheritance.

of meta-models of important subdomains should be made
available to the meta-modeler, who can extend and compose
them together to specify multi-paradigm domain languages.
These subdomains might include different variations of signal
flow, finite-state machines, data-type specifications, fault prop-
agation graphs, Petri-nets, etc. The extension and composition
mechanisms must not modify the original meta-models, just as
subclasses do not modify base classes in OOP. Changes in the
meta-model libraries, reflecting a better understanding of the
given domain, for example, can then propagate automatically
to the meta-models that utilize them. Furthermore, by precisely
specifying the extension and composition rules, models spec-
ified in the original domain language can be automatically
translated to comply with the new extended and composed
modeling language.

The GME meta-modeling language is based on UML class
diagrams. However, to support meta-model composition, some
new “operators” were necessary. These operators are new graph-
ical symbols that extend the visual syntax used in UML class di-
agrams. The operators are used to compose elements from two
class diagrams to form the content of a new class diagram. Note
that the new class diagram is implicitly represented by speci-
fying its constituent diagrams and how they are composed.

The union operator is used to represent the direct composition
of two UML class objects. The two classes cease to be separate
entities but form a single class instead. Thus, the union includes
all attributes, compositions, and associations of each individual
class. The union can be thought of as defining the “join points”
or “composition points” of two or more source meta-models.

Notice that multiple inheritance can be used instead of union.
For example, the union of two classes A and B is equivalent to
introducing a new class AB that is inherit from both A and B.
The only difference is that in the latter case, all three classes A,
B, and AB exist in the composed language, while applying the
union operator results in a single composite class.

New operators were also introduced to provide finer control
over inheritance. While it is usually not a good practice to ex-
tend existing well-known languages, such as UML, supporting
meta-model composition and the requirement that no modifica-
tion be made to existing meta-models mandated this extension.
When the new class needs to be able to play the role of the base
class but its internals need not be inherited, we use interface in-
heritance. In this case, all associations and those compositions
where the base class plays the role of the contained object are
inherited. In the sample meta-model in the left-hand side (LHS)
of Fig. 11 Sub is derived from Base using interface inheritance.
The RHS shows the equivalent class diagram when inheritance
is not used. Notice that A can contain Sub objects, and there is
an association between C objects and Sub-s. But the number at-
tribute of Base is not present in Sub, and Sub cannot contain B
objects.

On the other hand, when only the internals of a class are
needed by a subclass, we use implementation inheritance. In
this case, all the attributes and those compositions where the
base class plays the role of the container are inherited. Fig. 12
shows the same class diagram as Fig. 11, except that now im-
plementation inheritance is used to derive Sub from Base. The
RHS shows again how this would need to be modeled without
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Fig. 13. Implementation and interface inheritance.

inheritance. Subs can contains B-s, and it has the number at-
tribute. There is no association between C-s and Sub-s, and A-s
cannot contain Sub-s either (refer to the example in Section I for
another demonstration of this operator).

Notice that the union of these two new inheritance operators
is the “regular” UML inheritance. Consider a simple class dia-
gram where a class Base can contain instances of Base and has
a subclass Sub. An equivalent class diagram without inheritance
would look like the RHS of Fig. 13. Here instances of Base3 can
contain instances of Base3 and Sub3, and, similarly, instances of
Sub3 can contain instances of Sub3 and Base3. We get the same
result if we use both interface and implementation inheritance
between Base and Sub regardless of the order they are applied,
as illustrated in the figure.

Consider the LHS of Fig. 13. Sub is derived from Base
through both implementation inheritance (denoted by a filled
circle inside a triangle) and interface inheritance (denoted by an
empty circle inside a triangle). By applying the interface inher-
itance operator, we get the equivalent class diagram consisting
of Base2a and Sub2a. Similarly, applying implementation
inheritance first, we get Base2b and Sub2b. Finally, continuing
from either one and applying the remaining inheritance op-
erator, we end up with the class diagram of Base3 and Sub3.
Notice that this matches exactly the diagram we would get by
applying regular UML inheritance to Base and Sub, instead of
the two new operators.

It is important to observe that the use the union and new inher-
itance operators are just a notational convenience and in no way
change the underlying semantics of UML. In fact, every diagram
using the new operators has an equivalent “pure” UML repre-
sentation, and as such, each composed meta-model could be rep-
resented without the new operators. However, such meta-models
would either need to modify the original meta-models or require
the manual repetition of information in them due to the lack of
fine control over inheritance. These meta-models would also be
significantly more cluttered, making the diagrams more difficult
to read and understand.

Fig. 14. Fault-Adaptive Control Architecture.

Fig. 15. Top-level meta-model for plant modeling.

VI. AN EXAMPLE FOR META-MODELING: THE

FAULT-ADAPTIVE CONTROL TECHNOLOGY PROJECT

The Fault-Adaptive Control Technology (FACT) project [27]
aims at developing technology for complex control applications,
where faults in sensors, actuators, and the plant are anticipated,
and to address these problems the issues of controller reconfig-
uration are systematically explored. The goal is to provide tools
for the designer to build fault-adaptive control systems that can
survive faults. The proposed generic architecture is based on in-
tegrating high-fidelity diagnostics of dynamic systems with con-
trol technology, where the control portion can be influenced by
the results of the diagnosis. The generic architecture is instanti-
ated using a model-based approach: the designer builds models
of the plant and the corresponding control system, and software
generators synthesize the running application: a problem-spe-
cific instance of the generic architecture.

The overall approach, illustrated in Fig. 14, is using
model-based techniques for hybrid observation, for the de-
tection, isolation, and estimation of faults, and for controller
selection. We assume the systems we deal with combine the
continuous and discrete (switching) dynamics of the plant
with regulators operating on sampled data and discrete-event
supervisory controllers. Hybrid models [28], derived from
hybrid bond graphs [29], allow the systematic modeling of the
continuous and discrete dynamics of the plant. The supervisory
controller, modeled as a finite-state automaton, generates the
discrete events that cause reconfigurations in the plant. Fault
detection involves comparison of the expected behavior of the
plant (generated from the hybrid models) with actual system
behavior, to determine when discrepancies occur. This requires
the design and implementation of hybrid observers that estimate
the continuous dynamic states of the system and detect mode
changes during system operation. Sophisticated signal analysis
and filtering methods linked to the hybrid observers are used
for detecting deviations from nominal behavior and triggering
the fault-isolation schemes.
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Fig. 16. Meta-model for bond-graph nodes.

Our diagnostic schemes integrate the use of failure-prop-
agation graph-based techniques for discrete-event diagnosis
[5] and combined qualitative reasoning and quantitative pa-
rameter estimation methods for computationally efficient fault
isolation [31] of degraded components (sensors, actuators, and
plant components). The dynamic state accumulated from the
observer (discrete system mode plus continuous state vector)
and fault-isolation units (status of faulty and degraded sensors,
actuators, and plant components) define the active system
state model. The tracking, fault detection, and fault-isolation
mechanisms, illustrated on the LHS of Fig. 17, together con-
stitute a bottom-up computational approach for estimating the
dynamic system state (nominal or faulty) by monitoring plant
and controller variables.

When faults are detected, the diagnostics component executes
a fault-isolation procedure and updates the active (state) model
accordingly. The reconfiguration controller uses this informa-
tion to select from the controller library the controller that is
most effective in maintaining desired system operation and per-
formance. The selection and reconfiguration mechanisms op-
erate in a top-down manner, using the dynamic-state informa-
tion to effect changes in supervisory control mechanisms, se-
lection (not synthesis) of feedback control mechanisms, and re-
tuning of low-level regulators, such as Proportional-Integral-
Derivative (PID) or model-based controllers. The overall com-
putational architecture combines the bottom-up and top-down
computational schemes in a seamless manner, via the shared ac-
tive model.

As mentioned previously, the generic architecture is instanti-
ated for a particular application from a set of models that were

built using a modeling environment. The modeling language
used was defined by the meta-models as follows. The modeling
paradigm has been decomposed into the following two major
ingredients:

1) the modeling language for representing physical compo-
nents;

2) the modeling language for representing controllers.

Hereafter, we will we show the core concepts in both kinds of
meta-models.

A. Meta-Models for Plant Modeling

On the highest level, the meta-model declares that our model
database will contain physical Components, which might be
contained in ComponentLibrary folders, as shown on Fig. 15.

A Component, in this context, corresponds to a physical en-
tity in the plant (e.g., a valve, a pipe, and a motor), an instance
of which may be part of an energy-based bond-graph model.
These graphs consist of bond-graph nodes, as the meta-model
fragment on Fig. 16 shows.

One can recognize the familiar concepts from bond-graph
modeling: 1- and 0-junctions; R, C, and I elements; and flow
and effort sources. Bond graphs also need connections whose
meta-model is shown in Fig. 17.

In this language, components have energy ports, which are
connected to (internal) junctions and one- or two-port elements.
These ports are used on one level above the components to
model energy flows across and between components.

The bond-graph-based detailed modeling is complemented
by another modeling aspect where discrete failure modes and
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Fig. 17. Meta-model for bond-graph connections.

Fig. 18. Component failure modes.

their functional effects are modeled. Physical components can
have (atomic) failure modes, as shown on Fig. 18.

Failures can introduce cascades of functional failures, called
discrepancies. These cascades form failure-propagation graphs,
which have a meta-model shown on Fig. 19.

B. Meta-Models for Controller Modeling

The controllers in the FACT domain are implemented as soft-
ware components running on a platform called Open Control
Platform (OCP), which provides an integration platform and
run-time infrastructure [33], based on the concepts of real-time
CORBA. OCP supports a specific (software) component model,
where components encapsulate control algorithms operating on

packets of data, which are passed from component to compo-
nent via a dataflow network. The modeling language used for
controller modeling was tailored to support this approach, and
its meta-model is shown in Fig. 20.

Controllers are represented as networks of OCPComponents
that implement the control algorithms. OCPComponents op-
erate on typed packets of data, and the typing is specified via
OCPSignals, which are collections of attributes (like fields of
a structure in C). The control algorithms are represented in-
side of components in the form of OCPBehaviors. An OCPBe-
havior can be implemented as code in C++ or in the form of a
finite-state machine (from which C++ code is generated). Each
component has a fixed number of input and output ports through
which they receive and send data. The ports carry signals, which
have an associated data type in the form of an OCPSignal. The
components are scheduled for execution when they receive data
on their input ports. Once the data is processed, they send the
data produced through their output ports. When the behavior
is specified with the help of a finite-state machine, input data
trigger might trigger a transition from the current state to a next
state, and data-producing computation can be associated with
the transition or with a state.

OCPComponents are embedded in OCPSystems, which are
containers specifying system-level properties (OCPModes, etc.)
that are required in the run-time system. Once the systems con-
taining one or more controllers are modeled and the executable
code for the behaviors is supplied, a model interpreter tool trans-
lates the models into configuration files (for tools like Visual
Studio) and C++ source code (containing “glue” code for con-
figuring the objects). The designer can focus on the details of the
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Fig. 19. Meta-model for failure propagations.

Fig. 20. Meta-model for controller models.

control algorithms and just supply a high-level (visual) specifi-
cation of the controller architecture, as the software generator
tool will produce all the “housekeeping” code automatically,
from the models.

VII. CONCLUSION

Tools that are used to support the creation of complex multi-
paradigm domain-specific models must provide numerous ca-
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pabilities to handle complexity and manageability. The tool de-
velopers must further consider the different roles of the users in-
volved and provide complexity-managing capabilities for each
group. In some respects, the tool developers face problems that
are similar to those difficulties experienced by programming
language designers.

A study of the history of programming languages reveals
the great benefit realized from the introduction of typing facili-
ties [25]. The programmer’s ability to create their own user-de-
fined types offers the advantage of being able to generalize and
describe the key properties of a common set of entities from
the problem domain. Of course, the ability to categorize and
use global names to refer to types is not only an advantage for
writing programs. Types and prototypes are two capabilities that
can be very useful in modeling. Modeling tools that support
these concepts provide mechanisms to share a common descrip-
tion among numerous objects.

In our modeling tool, the GME, types, and prototypes allow
the modeler to categorize and manage common modeling con-
cepts. A prototype represents the default description for a mod-
eling concept. Cloning a particular prototype can create new ob-
jects. They reuse part of the knowledge stored in the prototype
by saying how the new object differs from the prototype.

Although the literature on types and prototypes has been cited
throughout the paper with respect to programming languages,
there appears to be little research into the use of types in do-
main-specific modeling environments. An application of types
within a modeling environment is presented in [15]. This work
focuses on the desire to perform type checking on the dynamic
interactions between component descriptions. Their implemen-
tation of type checking involves automata and reflection. The in-
tention of incorporating types into the GME, however, has reuse
of prototypical instantiation as a primary goal.

There are several challenging opportunities to extend these
ideas. A natural target for further research is to explore the in-
triguing interaction of the prototype–clone and containment hi-
erarchies and the connection, reference and sets relations. Par-
ticularly interesting topics are the systematic study of multiple
inheritance in the prototype–clone hierarchy and the introduc-
tion of a hiding mechanism in clones (to simulate the deletion
of implicit clones).
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